- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0001000004000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Shilpika (3)
-
Ma, Kwan-Liu (2)
-
Amobi, Emmanuel S. (1)
-
Banerjee, Shilpika (1)
-
Cea, Claudia (1)
-
Chandrasegaran, Senthil (1)
-
Chowdhury, Shilpika (1)
-
Crnovrsanin, Tarik (1)
-
Davis, James C. (1)
-
Fujiwara, Takanori (1)
-
Gelinas, Jennifer N. (1)
-
Hayward, Nicholas J. (1)
-
He, Tao (1)
-
Hyatt, Matt (1)
-
Jastrzebska‐Perfect, Patricia (1)
-
Jiang, Wenxin (1)
-
Khodagholy, Dion (1)
-
Klingensmith, Neil (1)
-
Le, Phi (1)
-
Läufer, Konstantin (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synovic, Nicholas M.; Hyatt, Matt; Sethi, Rohan; Thota, Sohini; Shilpika; Miller, Allan J.; Jiang, Wenxin; Amobi, Emmanuel S.; Pinderski, Austin; Läufer, Konstantin; et al (, Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering)Software metrics capture information about software development processes and products. These metrics support decision-making, e.g., in team management or dependency selection. However, existing metrics tools measure only a snapshot of a software project. Little attention has been given to enabling engineers to reason about metric trends over time—longitudinal metrics that give insight about process, not just product. In thiswork,we present PRIME (PRocess MEtrics), a tool to compute and visualize process metrics. The currently-supported metrics include productivity, issue density, issue spoilage, and bus factor.We illustrate the value of longitudinal data and conclude with a research agenda. The tool’s demo video can be watched at https://bit.ly/ase2022-prime. Source code can be found at https://github.com/SoftwareSystemsLaboratory/prime.more » « less
-
Crnovrsanin, Tarik; Shilpika; Chandrasegaran, Senthil; Ma, Kwan-Liu (, IEEE Transactions on Visualization and Computer Graphics)
-
Fujiwara, Takanori; Shilpika; Sakamoto, Naohisa; Nonaka, Jorji; Yamamoto, Keiji; Ma, Kwan-Liu (, IEEE Transactions on Visualization and Computer Graphics)
-
Jastrzebska‐Perfect, Patricia; Chowdhury, Shilpika; Spyropoulos, George D.; Zhao, Zifang; Cea, Claudia; Gelinas, Jennifer N.; Khodagholy, Dion (, Advanced Functional Materials)null (Ed.)
An official website of the United States government
